Combinatorial Spaces And Order Topologies
نویسنده
چکیده
An archetypal problem discussed in computer science is the problem of searching for a given number in a given set of numbers. Other than sequential search, the classic solution is to sort the list of numbers and then apply binary search. The binary search problem has a complexity of O(logN) for a list of N numbers while the sorting problem cannot be better than O(N) on any sequential computer following the usual assumptions. Whenever the problem of deciding partial order can be done in O(1), a variation of the problem on some bounded list of numbers is to apply binary search without resorting to sort. The overall complexity of the problem is then O(logR) for some radius R. The following upper-bound for finite encodings is shown: O(log|X|∞ log log N) Also, the topology of orderings can provide efficient algorithms for search problems in combinatorial spaces. The main characteristic of those spaces is that they have typical space complexities of O(2N ), O(N !) and O(NN ). The factorial case describes an order topology that can be illustrated using the combinatorial polytope . When a known order topology can be combined to a given formulation of a search problem, the resulting search problem has a polylogarithmic complexity. This logarithmic complexity can then become useful in combinatorial search by providing a logarithmic break-down. These algorithms can be termed as the class of search algorithms that do not require read and are equivalent to the class of logarithmically recursive functions. Also, the notion of order invariance is discussed. 1. Computable Structures A few terminological remarks can be made on the algebra of computable structures. Remark 1.1. A computable space is defined using the distinguishability problem. Remark 1.2. A computable space is said to be complete if it can represent a Turing-complete space. Furthermore, the following can be noted: Remark 1.3. The equality operator is defined using the cut metric of Equation 3.0.11. This is denoted = N .
منابع مشابه
On Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملTHE RELATIONSHIP BETWEEN L-FUZZY PROXIMITIES AND L-FUZZY QUASI-UNIFORMITIES
In this paper, we investigate the L-fuzzy proximities and the relationships betweenL-fuzzy topologies, L-fuzzy topogenous order and L-fuzzy uniformity. First, we show that the category of-fuzzy topological spaces can be embedded in the category of L-fuzzy quasi-proximity spaces as a coreective full subcategory. Second, we show that the category of L -fuzzy proximity spaces is isomorphic to the ...
متن کاملCategories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies
Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...
متن کاملM-FUZZIFYING TOPOLOGICAL CONVEX SPACES
The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...
متن کاملA combinatorial approach to certain topological spaces based on minimum complement S-approximation spaces
An S-approximation space is a novel approach to study systems with uncertainty that are not expressible in terms of inclusion relations. In this work, we further examined these spaces, mostly from a topological point of view by a combinatorial approach. This work also identifies a subclass of these approximation spaces, called SMC-approximations. Topological properties of this subclass are inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1209.1060 شماره
صفحات -
تاریخ انتشار 2012